MSSM Higgs Bosons at the Tevatron

Patrick Draper University of Chicago

P. D., Tao Liu, and Carlos E.M. Wagner, Phys. Rev. D 80, 035025 (2009)

Introduction

- The Tevatron reach for the Standard Model Higgs is getting stronger.
- Current exclusion at 95% C.L for $160 \; \mathrm{GeV} < m_h < 170 \; \mathrm{GeV}$
- Current data set is $\approx 7 \text{ fb}^{-1}/\text{experiment}$
- May run for two more years, gaining $\approx 2 \text{ fb}^{-1}/\text{experiment/year}$
- May be able to improve signal efficiencies in some channels.

Goal

What efficiency and luminosity improvements are necessary to constrain large regions of the MSSM Higgs parameter space?

Constraints on m_h in the SM

 Tevatron searches produce constraints on the signal relative to the signal predicted by the SM:

$$\frac{\sigma \times \operatorname{Br}}{\sigma_{SM} \times \operatorname{Br}_{SM}} \le R_{SM}^{95}$$

 Can compute naïve expected limits in each channel i at 95% C.L. (statistical errors, no signal, b>>1):

$$R_{SM,i}^{95} = 2 \times \sqrt{b_i}/s_i$$

• → Combined expected limit:

$$\frac{1}{(R_{SM}^{95})^2} = \sum_{i} \frac{1}{(R_{SM,i}^{95})^2}$$

Naïve Combined Limit vs CDF

Naïve Combined Limit vs Limit from CDF + D0

ullet R_{SM}^{95} scales with luminosity as $L^{-1/2}$ and signal efficiency as e^{-1}

Translating Limits into the MSSM

Rescale limits from individual channels

$$R_{MSSM,i}^{95} = R_{SM,i}^{95} \times \frac{\sigma_{SM,i} \times \operatorname{Br}_{SM,i}}{\sigma_{MSSM,i} \times \operatorname{Br}_{MSSM,i}}$$

Allow each channel to go through any MSSM Higgs state:

$$gg \to (h, H) \to WW; b\bar{b} \to (h, H, A) \to \tau^+\tau^-$$

- Recombine. Limit is a function of MSSM parameters.
- Differs from SM: rescaled couplings

$$g_{hdd} = -(m_d/v) \frac{\sin \alpha}{\cos \beta} \quad g_{huu} = (m_u/v) \frac{\cos \alpha}{\sin \beta}$$
$$g_{hVV} \propto \sin(\beta - \alpha)$$

SM-like vs. Nonstandard Higgs

- Typically one CP-even Higgs is SM-like in its couplings to gauge bosons, while the other has negligible gauge couplings and tan β-enhanced downtype fermion couplings
- Decoupling limit: m_A large, h SM-like. Antidecoupling limit: m_A small, H SM-like.
- $m_{nonstandard} \simeq m_A$
- Can search for SM-like Higgs with associated production or WW decays, but nonstandard searches require gluon/bottom quark fusion and down-type fermionic decays (also works for A)
- Classification fails for $m_A \simeq m_{\phi_{SM}}^{max} \simeq 125~{\rm GeV}$ and moderate tan β , where both h and H have reduced but sizeable gauge couplings. Here $m_A \simeq m_h \simeq m_H$ and all have enhanced couplings to down-type fermions

MSSM Benchmark Scenarios

- At tree level, m_A and $\tan \beta$ determine the Higgs spectrum and couplings to the SM.
- At loop level, more parameters enter $A_t, \mu, M_S...$
- Choose sets of benchmark values representative of different effects of the radiative corrections
- Scan over $(m_A, \tan \beta)$ plane, compute combined R_{MSSM}^{95}
- Plot 95% C.L. exclusions for various increases in luminosity and signal efficiency
- Initially, keep separate combined limits from SM-like Higgs search channels and MSSM direct searches to see complementarity.

Minimal Mixing Scenario

• Off-diagonal component $a_t \equiv A_t - \mu/\tan\beta$ of \tilde{t} mass matrix chosen small so that m_h is minimized,

$$m_h \sim 110 - 118 \text{ GeV}$$

- Soft mass scale raised to (partially) avoid LEP bounds
- Lighter Higgs →
 stronger constraints

$$M_S = 2 \text{ TeV}$$

 $\mu = 200 \text{ GeV}$
 $a_t = 0$

Constraints from SM-like Higgs Searches for Minimal Mixing

 α_t =0GeV, μ =200GeV, M_S =2TeV SM-like Higgs Searches, ϕ -> $b\overline{b}$, WW, 10fb⁻¹ б0 allowed 90% C.L., 1.5x effc 95% C.L., 1.5x effc 95% C.L., 1.25x effc 50 95% C.L., 1.0x effc LEP excl. 40 $\tan \beta$ 30 2.5*a*h 20 10 2.6σ 150 100 200 250 300 M_A (GeV).

Constraints from Nonstandard Higgs Searches for Minimal Mixing

Combined Constraints for Minimal Mixing

Small- α_{eff} Scenario

• Higgs mixing angle \rightarrow 0 in a region of the $(m_A, \tan \beta)$ plane because of cancellation between tree level and loop corrections to off-diagonal term in the mass matrix:

$$\mathcal{M}_{12}^2 \simeq -(m_A^2 + m_Z^2)/\tan\beta + \frac{h_t^4 v^2}{16\pi^2} \bar{\mu} \bar{A}_t (\bar{A}_t^2 - 6)$$

$$\bar{A}_t \equiv A_t/M_S, \, \bar{\mu} \equiv \mu/M_S$$

• \rightarrow need moderate, opposite-signed A_t, μ

Small α_{eff} Scenario

- Strongly suppresses $h \to b \bar b$ search channels, enhances $h \to WW$
- Demonstrates utility of WW in low-mass region

$$M_s = 800 \text{ GeV}$$

 $\mu = 2 \text{ TeV}$
 $a_t = -1.2 \text{ TeV}$

h,H \rightarrow bb search for SM-like Higgs for small α_{eff}

 a_t =-1.2TeV, μ =2TeV, M_S =800GeV SM-like Higgs Searches, ϕ ->b \overline{b} only, 10fb⁻¹

(h,H \rightarrow bb) + (h,H \rightarrow WW) search for SM-like Higgs for small α_{eff}

 $a_t = -1.2 \text{TeV}, \mu = 2 \text{TeV}, M_S = 800 \text{GeV}$ SM-like Higgs Searches, ϕ -> $b\overline{b}$, WW, 10fb⁻¹ б0 allowed 90% C.L., 1.5x effc 95% C.L., 1.5x effc 95% C.L., 1.25x effc 50 95% C.L., 1.0x effc LEP exc1. 40 β uet 30 20 10 100 150 200 250 300 $M_{\mathcal{A}}$ (GeV)

Combined search for small α_{eff}

Conclusions

- The Tevatron has the potential to probe almost all of MSSM Higgs parameter space at 95% C.L.
- Facilitated by complementarity between SM-like and nonstandard Higgs search channels
- 10 fb⁻¹ and 25% improvement in efficiency is necessary in all benchmark scenarios, even with a Higgs just over the LEP bound as in minimal mixing
- Decoupling limit requires 50% efficiency improvement in the maximal mixing and small α_{eff} scenarios
- Complementarity between bb and WW channels in SM-like Higgs searches can extend coverage when h is fermiophobic in the down sector, even in the low-mass region
- 3σ evidence is not expected in any scenario